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EXECUTIVE SUMMARY 

 

The objective of this work is a specific model of network tariffs for Distributed Energy 

Resources using loss spectrum marginal cost pricing considering energy demand 

response. The model uses data from customer load profiles, distribution networks, and 

associated standard costs. The loss spectrum marginal cost pricing uses the loss 

responsibility model, i.e., the increase in losses on the elements of the whole network due 

to the marginal increase in customer load. The loss responsibility model is adapted to 

weigh the influence of load profile on the maximum network losses, maintaining the 

thermal balance of the system in a long-term expansion paradigm. We adjusted the 

marginal revenues to be compatible with the regulatory costs, following the causality 

criteria and financial requirement. Our analyses are applied to the Distribution System, 

with about 200 thousand customers. We examine the economic impact of Battery Energy 

Storage Systems, Rooftop Photovoltaic System, and Electric Vehicle Recharging. This 

article studies the relation between Distributed Energy Resources, and the impact of the 

cost in distribution network and tariffs. 

Electricity tariffs are the main driver of the behind-the-meter adoption of Distributed 

Energy Resources, inducing dispatch and drastically changing the netload in the 

distribution network (Heleno et al. 2020a). Hence, it is necessary to implement policies 

to encourage Distributed Energy Resources, such as time-varying pricing (Ansarin et al. 

2020) or locational cost analyses (F. Sioshansi 2020). The fixed network is shared with a 

few customers, which increases the volumetric charge per consumers. It is called the 

distribution Death Spiral, i.e., continuously customers adopt Distributed Energy 

Resources systems due to progressively rising retail prices. Overall, customers pay the 

costs of capacity services on a volumetric basis, which results in an increasing share of 

capacity costs by customers without Distributed Energy Resources (R. Sioshansi 2016). 

In addition, flat tariffs increase electricity bills, peak netload, and fail to allocate reliability 

system costs (Fridgen et al. 2018). Suddenly, network tariff design has become a concern 

(Schittekatte, Momber, and Meeus 2018). 

Thus, to address this problem, this paper contributes to the literature by presenting a 

methodology to quantify the network costs impact due to Distributed Energy Resources 

and set an associated electricity tariff on the long-run marginal cost paradigm. We follow 
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the usual tariff criteria by the Distribution System Operators and regulatory entities. 

Hence, the contributions of this paper are threefold: 

• First, to perform an analysis considering the regulatory process to construct a 

specialized network tariff for Distributed Energy Resources. For this purpose, we 

used the cost-reflective tariff, Pareto optimality, and financial requirement. 

• Second, to propose a model that uses Long-Run Marginal Costs criteria for the 

network tariffs, according to the regulatory process. 

• Finally, to propose a model that uses a real system with thousands of elements and 

customers to consider a charge diversity to peak-load pricing. 

Consumers are traditionally divided into limited customer groups, due to homogeneous 

elasticity characteristics and consumption habits. The consumer classes met the 

requirements of the tariff structure of the distribution electricity systems. However, the 

characteristic of investment capacity in Distributed Energy Resources must be considered 

in the evolution of the current tariff structure. There are no off-the-shelf models for the 

tariff structure, i.e., they must be evaluated on a case-by-case basis, according to the 

technical, economic, and social characteristics of the area. 

However, cost causation criteria, financial requirement, and tariff stability must be 

considered when setting the tariffs for the new kind of standard customers. Thus, more 

accurate tariff structure models should be used to evaluate the economic impacts due to 

the variability of the characteristics of consumers, besides changing their consumption 

behavior through automation and electric vehicle recharging, and investment in energy 

storage and production. 

The findings presented in this paper emphasize the importance of Distributed Energy 

Resources tariff structure to make explicit the marginal and average costs per customer. 

The model substantially increases the calculation precision of impact costs and tariff, 

which enables statistical analysis of regionalized data and by customer characteristics, 

i.e., leaving it up to regulatory entities to define tariff structure. 

The Pareto optimal tariff is applying for Rooftop-PV. Our results indicate that it varies 

due to the load profile, and it is advisable to employ at least one differentiated tariff by 

consumer class. The findings presented in this paper emphasize the importance of a tariff 

structure that includes periods of optimal distribution network cost for Battery Energy 

Storage Systems in peak shaving. However, for the correct signaling, it is necessary to 
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reduce the temporal and locational granularity. The findings presented in this paper 

emphasize the importance of locational and dynamic price, indicating the best benefits of 

installing Battery Energy Storage Systems for peak shaving and sharing efficiency gains. 

The findings presented from Battery Energy Storage Systems can be applied to Electric 

Vehicle Recharging. Furthermore, there is a high price response because there will be no 

disconformity in changing the load profile. Thus, there will be a substantial increase in 

the consumption price elasticity, reducing the market response. 

The model is consistent, and it ensures a holistic tariff model to Distributed Energy 

Resources. Our analyses reveal an average tariff of 154.98 $/MWh for Smart Charging 

for charging time of 8 hours, against one of up to 265.77 $/MWh for Uncontrolled 

Charging. Moreover, with the application of locational tariffs by identifying the 10% of 

customers with the highest Economic Benefit and a 2-hour discharge period, it is possible 

to obtain an Economic Benefit of $ 333.51 per kWh injected into the distribution network. 

The tariff structure chosen is essential for a fair and efficient distribution system with vast 

Distributed Energy Resources adoption. The proposed model can offer more cost 

causality criteria designs by reducing temporal and locational granularity, which would 

allow studying the impact of the Distributed Energy Resources in tariff structure. 
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1. INTRODUCTION 

Practical aspects of regulation, concepts of justice, and equity resulted in the current 

theoretical foundations of tariff design (DORAU 1930). In the behind-the-meter 

paradigm, customers invest in Distributed Energy Resources (DER). They have adopted 

Battery Energy Storage Systems (BESS), Rooftop Photovoltaic Systems (Rooftop-PV), 

and Electric Vehicle Recharging (EVR) in response to price signals given by the network 

or by the market (Blackhall et al. 2020). In addition, the customer has access to 

communication at a low cost, and, as a result, their load profile is more responsive to the 

price. In the beyond-the-meter paradigm, Distribution System Operators (DSO) planning 

becomes more complex, considering that decisions of expansion in network capacity and 

generation are not centralized (Lazar et al. 2017; COHEN 2017). 

The new technologies increase price elasticity, enabling modulation and increased 

network efficiency. Nowadays, the energy flow is bidirectional, elasticity increases, and 

customers invest in energy production, reliability, and network capacity. Henceforth, low-

voltage customers cannot be considered passive anymore because Rooftop-PV enables 

consumers to self-produce energy. In addition, BESS enables self-producers to choose 

both their network energy and capacity parameters (Schittekatte, Momber, and Meeus 

2018). 

Electricity tariffs are the main driver of the behind-the-meter adoption of DER, inducing 

dispatch and drastically changing the netload in the distribution network (Heleno et al. 

2020a). Hence, it is necessary to implement policies to encourage DER, such as time-
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varying pricing (Ansarin et al. 2020) or locational cost analyses (F. Sioshansi 2020), e.g., 

Germany and Denmark are subsidizing network reinforcements due to Rooftop-PV and 

the lack of a refined price signal transmission (Anaya and Pollitt 2015). 

The flat-rate tariffs show significant cross-subsidization from consumers to prosumers 

(Garfield and Lovejoy 1964). The deployment of DER heavily increases Distribution 

Network Tariffs (DNT) to residential customers, especially under price-cap regulation, 

which assumes continuous load growth (el Hage and Rufín 2016). 

The fixed network is shared with a few customers, which increases the volumetric charge 

per consumers. It is called the distribution Death Spiral, i.e., continuously customers 

adopt DER systems due to progressively rising retail prices. Overall, customers pay the 

costs of capacity services on a volumetric basis, which results in an increasing share of 

capacity costs by customers without DER (R. Sioshansi 2016). In addition, flat tariffs 

increase electricity bills, peak netload, and fail to allocate reliability system costs (Fridgen 

et al. 2018). Suddenly, network tariff design has become a concern (Schittekatte, 

Momber, and Meeus 2018). 

Several factors influence the tariff structures, such as causality criteria, financial 

requirements, and fairness (Moncada et al. 2021b). However, DER policy and economics 

neglect the influence of social and behavioral components on decisions (Yakubovich, 

Granovetter, and Mcguire 2005). Hence, Regulatory entities that have suffered greatly 

with this issue have reacted by limiting, rescinding, or eliminating incentive programs for 

DER (R. Sioshansi 2016).  

Conceptually, the cost causality criteria can be met by using temporal and spatial 

granularity to the network tariff model, which would allow studying the economic impact 

of DER on distribution, energy losses, and tariff structures. Likewise, the tariff design 

chosen is essential for a fair and efficient distribution system with massive DER adoption 

(Bustos, Watts, and Olivares 2019). 

Price signals should be cost-reflective so that DER operation aligns with the optimal 

system-wide utilization of assets. However, understanding cost-reflective is becoming 

more complex, especially due to the structural changes in the planning and operation of 

the distribution network (Blackhall et al. 2020). 

The way DSOs have been recovering their costs through tariffs needs reformulation. The 

penetration of DER within the distribution network directly affects how DSOs charge 



7 

 

their customers a fair and cost-reflective tariff. Therefore, the new and adjusted tariffs 

impact innovation acceptance, evidencing a clear feedback loop (Freitas Gomes, Perez, 

and Suomalainen 2021; Heleno et al. 2020b; S. P. Burger et al. 2020). Amendments to 

tariff design are one of the main tools for expanding the benefits of customer engagement 

and DER assumption. 

The marginal costs of DER are nearly achieving the production, transport, and quality of 

the distribution network cost (Initiative 2016). Consequently, parameters for comparing 

tariffs through indirect competition emerge, making sectoral inefficiencies explicit. The 

cost-reflective tariff becomes evident and sectoral subsidies become explicit (Schramm 

1985a). Thus, computational models for pricing energy transportation will be increasingly 

demanded (Papavasiliou 2018). 

There is a practice in welfare economics that suggests that prices should be based on 

Long-Run Marginal Costs (LRMC) to achieve economic efficiency. Nevertheless, 

network revenue constraints are often based on embedded costs, typically superior to 

LRMC, which creates the problem of recovering residual costs (Brown, Faruqui, and 

Grausz 2015). 

Economic analyses with a behind-the-meter approach are applied in Rooftop-PV 

(Sharma, Han, and Sharma 2019; Hayat, Shahnia, and Shafiullah 2019), BESS 

(Barcellona et al. 2018; Koskela et al. 2019; Biroon, Biron, and Hadidi 2020), or EVR 

(Chekired, Khoukhi, and Mouftah 2018). Furthermore, the economic value of 

coordinating the planning, operation, and procurement of DER, is presented (Carvallo et 

al. 2020). They demonstrate how a DSO could largely overcome the complications of 

DER decision-making by incentivizing regulatory bodies to develop electricity tariffs that 

more closely reflect time and location, in an LRMC paradigm (S. P. Burger et al. 2020). 

According to (Carvallo et al. 2020), the decisions to invest in DER do not originate from 

any coordinated planning effort, and the decisions to operate these resources do not 

respond to any coordinated dispatch process. Nevertheless, in this paper, network tariff is 

an independent or exogenous variable. 

The paper (Moncada et al. 2021a) focuses on assessing the impact of possible tariff 

designs on DERs adoption and the DSOs death spiral, rather than investigating what an 

optimal tariff should look like. They developed an agent-based model to evaluate the 

interaction between tariff design and DER. In Ref. (Schittekatte, Momber, and Meeus 

2018), the genera cost recovery problem for the DSO is modeled as a non-cooperative 
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game between consumers, i.e., the availability and costs of the technologies strategically 

interact with tariff design. Depending on the tariff design, customers can offset their 

contribution from the failed network costs by investing in DER. Likewise, in this paper, 

the tariff is an independent or exogenous variable. 

Conversely, in a Short Run Marginal Costs (SRMC) paradigm, there is a group of 

methods that uses the Distribution Locational Marginal Prices (DLPM) model to calculate 

the energy price considering network contingency costs (Rana and Mishra 2019; Zhang 

et al. 2019; Papavasiliou 2018). ERV is highly responsive to the price signal. Therefore, 

it is common in this type of research to adopt DLPM for time-varying pricing, as 

demonstrated in (Ghosh and Aggarwal 2017; Wang et al. 2018; Zheng et al. 2019). The 

goal is to calculate the energy cost considering the SRMC of the distribution network and 

propose a model that contributes to the network efficiency using the price signal. 

The DLPM involves modeling thousands of devices and modeling DER complexity 

(Kraning et al. 2013). However, this research does not cover the totality of DSO networks. 

Most of these proposals are conceptual and lack strictness and details in distribution 

market operations analysis, demanding an investigation of the regulatory and institutional 

processes (Parhizi and Khodaei 2016). 

Conceptually, in terms of average expectation, LRMC is equivalent to a combination of 

SRMC and the optimal investment rule (Turvey 2017). Nevertheless, high price 

variations are not tolerated by customers, especially when it comes to public utilities, i.e., 

tariffs must be politically and socially acceptable (S. Burger et al. 2019). Hence, 

economic, and political considerations would rule out the implementation of SRMC 

(Schramm 1985b). The problem with price fluctuations is avoided with the LRMC. 

This study explores a model that provides locational and temporal marginal cost signals, 

offering support for the decision of regulatory entities and DSO to DER regulation, as the 

need mentioned in the (O’Shaughnessy and Ardani 2020). The main factor in cost 

causality criteria is the granularity of DNT. This paper focuses on assessing an optimal 

DER tariff, using beyond the meter analysis. Thus, to address this problem, this paper 

contributes to the literature by presenting a methodology to quantify the network costs 

impact due to DER and set an associated electricity tariff on the long-run marginal cost 

paradigm. We follow the usual tariff criteria by the DSO and regulatory entities. Hence, 

the contributions of this paper are threefold: 
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• First, to perform an analysis considering the regulatory process to construct a 

specialized network tariff for DER. For this purpose, we used the cost-reflective 

tariff, Pareto optimality, and financial requirement. 

• Second, to propose a model that uses LRMC criteria for the network tariffs, 

according to the regulatory process. 

• Finally, to propose a model that uses a real system with thousands of elements and 

customers to consider a charge diversity to peak-load pricing. 

This paper proposes a new model of dynamic and locational electricity distribution 

network tariffs to DER, demonstrating the feasibility of defining a cost-reflective tariff, 

following cost causality criteria. In the following pages, we first review background 

literature on electricity distribution network tariffs. Section 3 covers details on dynamic 

and locational tariffs methodology, using the loss spectrum marginal cost pricing model, 

according to (Roselli 2020). In Section 4 the model covered in Section 3 is applied in a 

distribution network with DER to get a specific analysis of the tariff structures of BESS, 

Rooftop-PV, and EVR. Finally, Section 5 presents the conclusions of the paper. 

 

2. TARIFF STRUCTURES 

 

2.1. Marginal Costs Criterion 

The first stage of tariff structures is the calculation of strict LRMC that considers the 

economic efficiency criterion (Schramm 1985b). According to (Turvey 2017), LRMC is 

the present worth of all system costs as they will be with the increment in load, which is 

to be costed, less what they would be without that increment. If the price was set equal to 

LRMC, consumers could indicate their willingness to pay for more energy, thus 

justification for further investment to expand capacity. In the second stage of tariff design, 

we sought ways in which the LRMC may be adjusted to meet the other objectives, among 

which the financial requirement is the most important, i.e., producing revenues approved 

by the regulatory entities (Munasinghe 1981). 

The marginal costs tend to be higher than average costs when the unit costs of supply are 

increasing. Hence, if prices were set equal to LRMC, it is likely that there will be a 

financial surplus. Conversely, if marginal costs are below average costs, the pricing at the 
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LRMC will lead to a financial deficit. Thus, a general price increase will be necessary for 

the financial requirement criterion. 

Another reason for diverging from the LRMC arises because of the second-best policy. 

The tariff structure must recognize various electric energy substitutes and complements 

(Munasinghe 1981). The goal of the Electricity Distribution Network is to grow, even if 

it means making it prevent excessive use of the alternative forms of energy. In this case, 

pricing electricity below the LRMC may be justified (Munasinghe 1981; Caywood 1972; 

Schramm 1985b). Nevertheless, tariff design is against unfair discrimination. According 

to (Nash 1933): “[…] discrimination is commonly understood to mean a difference in 

rates or service conditions relating thereto for service of substantially the same 

characteristics, taking into account volume, load factor, load density, time of use, 

character of use, and any other significant factors”. Thus, the discrimination of DNT has 

been admitted if it respects measurable parameters. 

 

2.2. Peak-Load Pricing and Customer Responsibility 

In 1892 John Hopkinson created the two-part tariffs for electric energy distribution, 

explicitly considering maximum demand and power consumption as independent 

calculation bases for the electric energy costs (Garfield and Lovejoy 1964). A conceptual 

model of peak-load pricing was proposed by Steiner (Steiner 1957). For the optimal 

prices, in peak periods, settings tariffs to long-run marginal cost, and when there is idle 

capacity, i.e., off-peak periods, setting tariffs to system marginal running cost 

(Simshauser 2016). Furthermore, a peak capacity-based tariff is a more efficient, cost-

reflective, equitable, and improves the tariff stability, providing a financial requirement 

(Simshauser 2016). With the metering evolution, peak load pricing adopts the period of 

occurrence. The energy rates would be the generation cost itself. The example proposed 

in Fig. 1 presents a distribution system with three customers, the transformer to which 

they are connected, and the respective load profiles. The objective is to divide the 

transformer costs exclusively. 
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Fig. 1a. Consumer Unit. 

 

Fig. 1b. Load Profile. 

When disregarding the losses in the low voltage network, branch line, and meter, the 

transformer peak occurs at 5 p.m., with a demand of 2kW for customers A and C and 

6kW for customer B. Considering that the expansion is due to maximum netload, it is 

reasonable to apportion the costs of the equipment to the contribution, or responsibility, 

of the customer at the transformer peak time. This way, the customer's A and C 

contribution to the expansion would be 20%, and for customer B 60%, which would be 

the basis for the collection of the tariff share referring to the system expansion, based on 

the incremental transformer cost ($/kW). 

Some model criticisms presented should be pondered considering the tariff criteria. 

Firstly, the final energy cost can be erratic due to unpredictable load profile variation or 

customer apportionment. In second place, for some customers, load modulation may be 
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unfeasible, and the economic signal is innocuous, which would impair customer 

acceptance (Biggar 2010). Thirdly, considering that the expansion will occur exclusively 

due to the peak is a simplification that disregards the load dynamics and transformer 

thermal models. The load condition in off-peak time influences the capacity supported by 

the transformer. Finally, in the practical case, the load profile presented is a static 

representation. However, the load profile tends to vary according to the day of the week 

and has seasonal variation. For these reasons, we search for a comprehensive model that 

can be attributed to customers for the expansion costs. 

When considering the LRMC criterion the optimal investment rule is assumed. Therefore, 

the idle capacity of the transformer is necessary for the operation and should be 

apportioned among all consumers, i.e., the costs of a transformer should be apportioned 

according to the peak load usage. In contrast, if we consider the SRMC criterion for 

apportioning network costs, then the marginal cost of using the transformer is zero (losses 

are ignored). The SRCM criterion would cause erratic tariff variations, impairing the 

financial planning of customers and DSO (Brandstätt, Brunekreeft, and Friedrichsen 

2011). 

 

3. LOCATIONAL AND DYNAMIC DISTRIBUTION SYSTEM 

TARIFF 

The purpose of this item is to present a problem‐solving approach, applied to a 

distribution system with thousands of modellable elements that considers long-term cost 

pricing, following cost causality criteria and financial requirement. The lack of 

comprehensive models that consider tariff criteria inhibits the evaluation of the economic 

influence of DER. 

 

3.1. Losses Spectrum Marginal Cost Pricing 

This paper proposes an evolution in the proposed method presented in (Roselli 2020). 

The model results in locational time-varying pricing, as described in the following topics. 
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3.1.1. Losses Responsibility 

Conceptually, the peak-load capability is the main driver of the network costs. Several 

models present the peak-load capability as a function of constructive conditions, ambient 

temperature, and network element losses (Li et al. 2005; Alvarez, Rivera, and Mombello 

2019). Therefore, we can extend the model to include the peak-load capability depending 

on losses, keeping the assumption of invariability of ambient temperature. 

As defined in (Queiroz et al. 2012), the loss resulting from a load variation, is given in 

Eq. (1). 

𝐿𝑜𝑠𝑠𝑒𝑠 = 𝐿𝑜𝑠𝑠𝑒𝑠𝑓𝑙𝑎𝑡. (𝐶𝑉2 + 1)    (1) 

According to Eq. (1), Losses are the equivalent Losses resulting from mean current I(t) 

transmission (flat) in an element of a network, multiplied by the current curve statistical 

Coefficient of Variation (CV) squared. In nominal conditions and steady-state, Ref. 

(Queiroz et al. 2012) adopts the power per unit equivalent to current, which leads to the 

active power load profile CV.  

As defined in (Roselli et al. 2022), when considering the root-mean-square wave, the 

losses are given by Eq. (2). Where Hi is the sine/cosine amplitude function and H0 is the 

average power demand profile. Therefore, we can calculate the periodic wave variance 

by half the sum of squared amplitudes of its harmonics. 

𝐿𝑜𝑠𝑠𝑒𝑠 = 𝐿𝑜𝑠𝑠𝑒𝑠𝑓𝑙𝑎𝑡 ∙ (∑ (
𝐻𝑖

𝐻0
)
2

𝑁
𝑖=1 + 1)    (2) 

Each load harmonic component contributes to the loss composition. The harmonic 

amplitude squared defines the loss spectrum. With new technologies such as DER, 

consumers become prosumers (Bustos, Watts, and Olivares 2019). The loads now lean 

for a bidirectional flow, changing the load profile, mainly during the day due to Rooftop-

PV. The model proposed by (Roselli et al. 2022) generalizes the load profile, allowing 

the negative representations of peak. Figure 2 presents a typical transformer daily netload 

profile and curve with a low pass filter, considering only up to its octave order. 
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Fig. 2. Transformer daily load profiles Low-pass filter. 

We chose the harmonic order of 8n according to the identification of significant harmonic 

components and random fluctuations based on Whittle´s tests (Roselli et al. 2022). The 

representation approaches the curves as we reconstruct the load profile by higher 

harmonic orders. Even using all harmonic orders, the sampling frequency limits (Nyquist 

rate) the curve accuracy. The load profile representation in the frequency domain 

conceptually has advantages over the time domain. Firstly, there is the decay of harmonic 

order modules, e.g., with 15,000 transformer daily load profiles, normalized by 

continuous component unit, we obtained the curve of streaks (harmonic spectrum) in the 

form of a boxplot, see Figure 3. 

 

Fig. 3. Harmonic spectrum of transformer daily load profiles. 

Second, the module reduction is inversely proportional to the harmonic order (see Figure 

3). This feature is desirable because we can prioritize components in simplifications of 
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load models. There is a low variance in the model in the frequency domain (see Figure 

3). This characteristic demonstrates the convenience of using the frequency domain 

information to collect patterns in load profiles. 

The variation of losses of network element j, due to a load variation of customer k, can 

be obtained by the derivative of the Eq. (2) for each load harmonic i, i.e., 

(𝜕 𝐿𝑜𝑠𝑠𝑒𝑠)/(𝜕 𝐻𝑖 ). According to (Roselli 2020), the model assumes that when 

increasing the load of a customer k, assuming load profiles are constant, the incremental 

losses in network element j to which it is connected are due to the Loss Responsibility 

(LR j,k) Eq. (3). 

𝐿𝑅𝑗,𝑘 =
1

𝑃𝑏𝑎𝑠𝑒,𝑗
2 ∙ (

[
 
 
 
1

𝐻0,1
⁄ ⋯ 0

⋮ ⋱ ⋮

0 ⋯ 1
𝐻0,𝑘

⁄ ]
 
 
 
× [

𝐻1. 𝐻1,1 ⋯ 𝐻𝑖 . 𝐻𝑖,1

⋮ ⋱ ⋮
𝐻1. 𝐻1,𝑘 ⋯ 𝐻𝑖 . 𝐻𝑖,𝑘

] . [
1
⋮
1
] + 2. 𝐻0 [

1
⋮
1
])  (3) 

Where Hi·Hi,k represents the vector product between load harmonic i of network element 

j concerning load harmonic i of customer k. H0,k and H0 represent, respectively, the 

average power demand profile of consumer k and network element j. We adopt the 24-

hour fundamental of load harmonics. Pbase represents the network element j nominal 

power rating. By concatenating the matrices LR j,k according to the connections of the 

network and load elements, it is possible to obtain the variation in losses in each 

distribution system element due to the customer k load variation. 

Consider the example in Figure 1. By applying the Discrete Fourier Transformer (DFT), 

the load profiles of Figure 4 are obtained. 

 

Fig. 4. Load Profile Low-pass filter. 
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Consider the transformer expansion cost apportionment model of Figure 1 applied to a 

transformer with the following data: power of 12.5 kVA, Copper Losses are 500 W and 

Iron Losses are 100 W. Consider unity power factor and 24 hours period (angular 

frequency ω = 2.π/24). Table 1 presents the functions of the customer load profiles. 

Table 1. Load profile 

Load Demand [kW] 

A 2.00 + 1.20 ∙ cos(𝜔. 𝑡 − 2.92) + 0.15 ∙ cos(2 ∙ 𝜔. 𝑡 + 1.71) + 0.19 ∙ cos(3 ∙ 𝜔. 𝑡 + 0.53) 

B 2.00 + 1.83 ∙ cos(𝜔. 𝑡 + 2.09) + 1.28 ∙ cos(2 ∙ 𝜔. 𝑡 − 2.12) + 0.65 ∙ cos(3 ∙ 𝜔. 𝑡 − 0.05) 

C 2.00 

Transf. 6.00 + 2.46 ∙ cos(𝜔. 𝑡 + 2.57) + 1.17 ∙ cos(2 ∙ 𝜔. 𝑡 − 2.20) + 0.82 ∙ cos(3 ∙ 𝜔. 𝑡 + 0.08) 

In addition, consider the transformer installation cost as being $ 3,000, with operation and 

maintenance costs of 2% per year and a remuneration rate of 5% per year. Converting the 

sine functions to rectangular complex form has the matrix that relates the harmonic 

components (Column) to consumers (Row), according to Eq. (1), is obtained in the 

complex matrix Eq. (4). 

[

−1.17 − 0.27𝑗 −0.02 + 0.15𝑗 0.17 + 0.10𝑗
−0.09 − 1.59𝑗 −0.67 − 1.09𝑗 0.65 − 0.03𝑗
 0.00 + 0.00𝑗  0.00 + 0.00𝑗 0.00 + 0.00𝑗

] (4) 

As well as the vector that represents the harmonic components of the transformer, 

according to Eq. (5). 

[−2.07 + 1.32𝑗 −0.69 − 0.94𝑗 0.82 + 0.06𝑗] (5) 

Applying the scalar product between Eq. (4) and Eq. (5) we have Eq. (6). 

𝐿𝑅 =
0.5

12,52
([

2−1 0 0
0 2−1 0
0 0 2−1

] × [
1.17 ∙ 2.07 − .27 ∙ 1.32 . 02 ∙ .69 − .15 ∙ .94 . 17 ∙ .82 + .10 ∙ .06
. 09 ∙ 2.07 − 1.59 ∙ 1.32 . 67 ∙ .69 + 1.09 ∙ .94 . 65 ∙ .82 − .03 ∙ .06
−.00 ∙ 2.07 + .00 ∙ 1.32  −.00 ∙ .69 − .00 ∙ .94 . 00 ∙ .82 + .00 ∙ .06

] × [
1
1
1
] + [

2 ∙ 6
2 ∙ 6
2 ∙ 6

])   (6) 

Solving Eq. (6), we now have Eq. (7). 

𝐿𝑅 = [
4.172%
4.799%
3,840%

] (7) 

The transformer has the loss increased by 0.04172 kW, 0.04799 kW, and 0.0384 kW for 

a 1 kW increase in the load of customers A, B, and C. Obtaining the loss relativity impact 

for the consumer does not require knowledge about the equipment data. In addition, 

according to (1), the non-existent load harmonic components in the transformer do not 

contribute to the increase in losses. It is a useful characteristic in the simplification of 

calculations, according to Eq. 3. 
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Performing the loss simulation under operating conditions gives an average loss of 

0.228109 kW. When customer A is marginally increased by 1 W, the loss will be 

0.228151 kW, which represents a percentage increase of 4.172%, equivalent to the loss 

responsibility of customer A. As we will see next, the LR can be a useful tool for capacity 

definition and calculation of the marginal cost. 

 

3.1.2. Time Loss Spectrum Marginal Cost Pricing 

As proposed by (Steiner 1957), LRMC should be allocated only at the price peak. 

However, using the model of the thermal dynamics of electrical equipment, certainly the 

load condition in the off-peak period influences the system peak. When considering the 

power, for a two-stage curve, the initial condition taken as the off-peak stage will 

influence the peak approximately according to function f , Eq. (8) (Roselli 2020). 

𝑓 =
−𝜏∙𝑙𝑛(1−𝑘2)

𝑇𝑃
 (8) 

Where k is the ratio between off-peak and peak load, 𝜏 is the equipment thermal constant, 

and Tp is the peak duration. Note that for load factors close to unity there will be a large 

influence of off-peak load on peak period. The Eq. 8 applied to Figure 1 is shown in 

Figure 5 in comparison with the model proposed by (Steiner 1957). 

 

Fig. 5. Relation off Peak – Peak. 

The setpoint is previously defined as a statical load profile percentile, which segregates 

peak and off-peak. By choosing the setpoint, we eliminate the need to define 𝜏 and Tp. 

The y-axis represents the total cost percentage. The losses by themselves do not define 
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the increase in the capacity of the electric system, but it is also defined by the moment of 

its occurrence. Therefore, before using Eq. (3) it is necessary to apply Eq. (8) to the 

customer's load profiles and transformers Ck (h) and Cj (h), respectively, which results in 

Eq. (9) and Eq. (10). 

{𝐻1,𝑘, … , 𝐻𝑖,𝑘} = ℱ{𝑓(𝐶𝑘(ℎ))} (9) 

{𝐻1, … , 𝐻𝑖} = ℱ{𝑓(∑ 𝐶𝑗(ℎ)𝑘
𝑗=1 )} (10) 

Where ℱ{∙} is the DFT. To maintain the thermal equilibrium conditions of an electrical 

distribution system, it is considered that the expansion will be proportional to the marginal 

increase in losses, qualified by Eq. (8). If the setpoint chosen is near zero, the model of 

Ref. (Steiner 1957) and Ref. (Roselli 2020) become equivalent. In this case, it is enough 

to apply Eq. 3 for the peak period, i.e., it is unnecessary to apply Eq. (8)-(10). 

Thus, with 𝐿𝑅𝑗,𝑘, it is possible to obtain the Marginal Cost Pricing (MCP) of customer k 

according to (11) (Roselli 2020). 

𝑀𝐶𝑃𝑘,𝑗,ℎ = 0.5 ∙ 𝐿𝑅𝑀𝐶𝑗(𝑖𝑂&𝑀, 𝑖𝑊𝐴𝐶𝐶) ∙ 𝑓(𝐿𝑅𝑗,𝑘) (11) 

Where: 𝑀𝐶𝑃𝑘,𝑗,ℎ: Marginal Cost Pricing of customers k, to element j in the analyses in 

period h; 𝐿𝑅𝑀𝐶𝑗: LRMC of network j; 𝑖𝑂&𝑀: percentage of O&M Cost; and 𝑖𝑊𝐴𝐶𝐶: return 

rate of assets. The costs with distribution and transmission assets and operating costs will 

be prorated according to the MCP of consumer k (5). The costs with losses are 

apportioned according to the incremental share in the electric system losses according to 

(3). 

 

3.1.3. Data Analysis 

For the completeness of customer economic analysis on the network, it is necessary to 

adopt a standard load profile of the customer. Afterward, they are converted to the 

frequency domain using the DFT (Lee and Girgis 1988). The LRMC process is segregated 

by the municipality. The second dataset is the connection information between customers 

and network elements obtained from a georeferenced database. 

 

3.1.4. Calculation Algorithm 

The following algorithm is executed: 
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1. Load flow considering the load profiles. 

2. Definition of network element peak by calculating the upper decile load 

profile. 

3. Application of Eq. (8) on the customer load profiles and netloads and 

application of Eq. (9)-(10). 

4. LR matrices calculation, according to (3). 

5. MCP of customer to system elements by applying (11). 

6. Marginal Revenue Calculation. 

7. Sum of marginal revenues and adjustment factor for regulatory costs 

(financial requirement). 

8. Application of the factor calculated in the previous step to the MCP 

vectors. 

9. Obtaining the network tariff vectors. 

For the losses cost flow steps 1 and 4 are applied and redistributed hourly by the LR of 

customers. The energy function uses a linear distribution. We implement the calculation 

model in Matlab 2018B software. Figure 6 presents the flowchart. 

 

Fig. 6. Locational and Dynamic Distribution System Tariff Process. 
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Table 2 details the DNT and Energy Rates (ER) calculation processes, according to the 

Flowchart of Figure 7. 

Table 2. Tariff Process. 

Note: LV is Low Voltage; MV is Medium Voltage; and HV is High Voltage. 

 

The process observes the regulatory costs. Secondly, the costs are segregated by 

consumer classes, resulting in regulated prices in $/kWh. The proposed model can present 

detailed costs. It is possible to aggregate marginal costs most conveniently by region, 

consumer class, and technology. Therefore, the statistical evaluation and aggregation of 

results using weighted average Marginal Cost Pricing. 

 

Process Description Inputs Outputs 

Long-Run 

Marginal Costs 

The average accounting 

costs of transformer and 

substation by installed 

capacity ($/kW) and of 

low voltage and medium 

voltage grids by type and 

length ($/kW-km). 

Distribution Assets 

Account and Grid Costs 

Construction Plan ($), and 

Assets operating 

characteristics (kW). 

Estimated LRMC 

($/kW). 

Load Profile 

per Customer 

Energy (kWh) per 

customer and standard 

load profile. 

Standard load profile and 

customer energy 

measurement. The 

measurement is performed 

manually for LV and 

remotely for MV and HV. 

Aggregated data for 

Energy (kWh). Three 

load profiles for the 

customer, representing 

Weekdays, Saturdays, 

and Sundays.  

Load Flow 

Distribution load flow 

using OpenDSS software 

to define harmonic load 

components. 

Injection measurement 

data, representation of the 

grid elements using a 

georeferencing system, and 

standard load profiles for 

weekday, Saturday, and 

Sunday. 

Power losses of the 

distribution grid and 

Losses Responsibility 

(see item 3.1.1) 

 

Losses and 

Losses’ 

Responsibility 

According to item 3. 

Customer Load Profile and 

Netload profile in a 

frequency domain 

𝐿𝑅𝑗,𝑘 as defined in Eq. 

(3) and Losses Costs 

Marginal Cost 

Pricing 
According to item 3. 

LRMC and Losses 

Responsibility 

𝑀𝐶𝑃𝑘,𝑗,ℎ as defined in 

Eq. (11) 

Adjusts 

Adjust to efficient costs: 

transmission costs, 

operational costs, network 

depreciation, remuneration 

of investments. 

Efficient costs and 

Marginal Cost Pricing 
Capacity Costs 

Energy Rate 

Costs 

Energy Rates due to 

operation costs 

The mix of the price of 

Energy Contracts and 

energy per customer group 

Energy Rate Costs 

($/kWh) 

Sum of Costs 

Considered costs 

associated with 

distribution transport. 

Capacity, losses, energy, 

and public policy costs. 

Tariffs and Energy 

Rates 
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3.2. Dynamic and Locational DNT Results 

The distribution network has 7 HV-MV (138-13.8 kV) transformers, 11.731 HV-LV 

(13.8-0.22 kV) transformers, and 46 feeders. In addition, there are 171,670 LV customers 

and 492 MV customers. LV customers have historic average consumption rates of 2,689 

kWh per annum and MV customers have historic average consumption rates of 475,880 

kWh per year. In LV, households represent 56,4% of total energy and commercial 

establishments represent 21,6% of total energy. Data from the 2015 year. Geo-referenced 

single line diagram of the network (MV and LV) is presented in Fig. 7. 

 

Fig. 7. Low and Medium Voltage Network 

For the simulations, revenue data calculated in the Tariff Review process of regulatory 

bodies, according to data from (ANEEL 2016). Firstly, we aggregate evaluation of tariffs. 

Secondly, we analyze the tariffs per customer and hourly. Figure 8 presents the average 

network tariff (including energy rates) in a location function. 
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Fig. 8. Low Voltage Tariffs ($/MWh) 

Figure 9 presents the statistical day network tariff (including energy rates) in a boxplot 

time function. 

 

Fig. 9. Boxplot of tariffs for consumers served at low voltage 

The runtime was 43 minutes for the test case, considering a computer with an AMD 

Ryzen 5, 3500U processor, and 12Gb RAM. Finally, different from existing literature, 

we will adopt the criteria: long-term marginal cost; peak load pricing criteria; large scale 
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(realistic application); cost causality criteria; and financial requirement. Such criteria are 

used by regulatory entities and DSOs in a practice tariff design. 

 

4. LOCATIONAL AND DYNAMIC DISTRIBUTION SYSTEM 

TARIFF APPLIED TO DER 

The goal of the following sections is to use the model proposed in 3 to define consumer 

classes and tariffs, according to cost causality criteria and financial requirements. The 

main characteristic of DER is its technical and economic impact on the distribution 

network. Therefore, it demands more sophisticated models aimed at reducing the problem 

granularity and detailing its cost impacts. 

 

4.1. Price Signal to DER 

There is a unification of practices in electrical pricing due to the organizational form or 

routine of DSO and regulatory bodies (Yakubovich, Granovetter, and Mcguire 2005). In 

Ref. (Freitas Gomes, Perez, and Suomalainen 2021) authors describe how tariff structures 

affect crucial elements to be considered before investing in DERs and how they can affect 

cost recovery from the DSOs. In addition, tariff structures can influence DERs adoption 

patterns and the utility death spiral (Moncada et al. 2021a). To achieve an optimal tariff, 

regulatory entities need to set it as close as possible to the true LRMC for the system, to 

drive customers to make socially best DER adoption decisions (Carvallo et al. 2020). 

The initial discussion of tariff structure should be how to classify its consumers, for the 

purposes of cost-reflective, measurement, and billing. The consumer classes must have 

uniformity in price elasticity of consumption and economic conditions (DORAU 1930). 

Hence, nowadays, sophisticated retailers or DSOs dissect residentials into six or more 

sub-segments. Marketing channels are specifically constructed to target customers in 

these discrete sub-segments. In addition, some households have Rooftop-PV or use 

automated systems. Therefore, with the number of consumer sub-divisions increasing and 

the mix of discrete household metered loads emerging, the number of products 

necessarily multiplies (Simshauser 2018). For better efficient energy management of 

customers, it is also essential for DSOs to offer pricing to different groups of customers 

and dynamic pricing (Tsao et al. 2022). 
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In Ref. (Burns and Mountain 2021), the authors estimate the elasticity of substitution for 

households on Time-Of-Use (TOU) tariffs using a sample of 6957 electricity bills in 

Australia. Your findings suggest that Australian households respond weakly to time-

varying tariffs, and customers in the lowest socio-economic areas do not respond at all. 

According to (Cosmo and O’Hora 2017), TOU and financial feedback influenced the 

degree to which consumers reduced usage. The data suggest that households reduced 

consumption rather than shifting consumption from the peak. The lack of appropriate 

technologies possibly made it difficult for consumers to switch consumption habits. In 

Ref. (George and Bell 2018), the authors use a pay-to-play recruitment approach for more 

than 50,000 customers. The pilots also showed that TOU rates can produce a small 

reduction in overall energy use. The authors in Ref. (Gyamfi, Krumdieck, and Urmee 

2013) investigate the challenges in achieving effective voluntary demand reduction based 

on literature. The results indicate that a high fraction of households does not respond to 

price.  

On the other hand, dynamic pricing is in the class of price response programs that have 

gained the greatest attention in recent times (Gyamfi, Krumdieck, and Urmee 2013). 

Authors in Ref. (Geng et al. 2019) present a smart charging management system 

considering the elastic response of electric vehicle users to price. They conclude that 

EVRs can respond to the different electricity prices, and the coordinated pricing results 

are effective to guide the charging behavior of EVRs. In addition, EVR will change load 

characteristics, such as high demand price elasticity, charging schedule options without 

discomfort, and control of charging time (slow, semi-fast, fast, and ultra-fast). The flat 

tariff design does not provide incentives for EVR load modulation (Küfeoğlu, Melchiorre, 

and Kotilainen 2019). 

Therefore, this study explores two different tariff design approaches. First, we will 

evaluate a flat rate under cost causality criteria in a low voltage customer that tends not 

to respond to hourly price signals, applied to Rooftop-PV. Second, we will evaluate time-

varying pricing applied to BESS and EVR, with high demand price elasticity. 

 

4.2. Rooftop-PV 

Net-metering can over-incentivize Rooftop-PV acceptance and force consumers without 

Rooftop-PV to pay the residual costs that prosumers manage to offset. In turn, the increase 
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in the DSO costs may incentivize customers without Rooftop-PV to adopt the resource, 

creating a positive feedback loop (Schittekatte, Momber, and Meeus 2018; Moncada et 

al. 2021a). The aggregation of Rooftop-PV to the residential consumer will not change 

its low intraday elasticity. Therefore, we define a flat tariff ($/kWh) that is consistent with 

cost causality criteria, Pareto optimal, and financial requirements. According to (Viscusi, 

Harrington Jr, and Sappington 2018), in a Pareto optimal “the equilibrium cannot be 

replaced by another one that would increase the welfare of some consumers without 

harming others […] One tool for evaluating the effect of a policy change is the Pareto 

criterion”.  

For the simulations, we adopt the curve represented in Figure 10 as the model for 

Rooftop-PV insertion. Furthermore, the load profiles aggregated by consumer class are 

presented. 

 

Fig. 10. Rooftop-PV and Load profile. 

In practice, the growth of Rooftop-PV tends to be lower than the distribution load growth. 

Thus, the simulations aim to evaluate the effect of the additional costs in the network due 

to the Rooftop-PV adoption. 

With the base-case scenario proposed in section 3, the Rooftop-PV is inserted randomly 

in 1% of customers. The customer is selected and associated with the generation curve 

corresponding to 80% of the energy consumption. The load growth counterpart of the 

complementary customers (without Rooftop-PV) is considered. Thus, the simulations 



26 

 

have the same total distributed energy, disregarding the effect of load growth/reduction 

on tariffs, according to a long-term cost analysis. 

The adjustment factor to revenues of step 7 (item 3.1.4) is held steady according to the 

base case. Therefore, our analyses reveal that the necessary revenue increases to maintain 

the financial requirement of the DSO (case Rooftop-PV). The Rooftop-PV adoption 

results in a decrease in the load factor of the distribution network, i.e., it implies an 

increase in long-term marginal costs. We adopted the energy injected into the network as 

a base for the tariff. Taking the necessary additional revenue due to Rooftop-PV (case 

Rooftop-PV minus case-base), and dividing by the injected energy of prosumers, we have 

the average tariffs for consumer class, as shown in Table 3. 

Table 3. Results. 

Consumer Class DNT ($/MWh) Low-Voltage Tariff Ratio 

Residential 52.66 80.51% 

Commercial/Industry 38.88 59.44% 

Rural 33.22 50.79% 

Table 3 also provides the relation between the tariffs calculated for the Rooftop-PV 

insertion scenario and the base-case scenario of 108.75 $/MWh, referring to DNT. The 

practical use is applying the factors obtained for DNT in a general way for all customers 

with Rooftop-PV, segregating by customer classes. 

 

4.3. Battery Energy Storage Systems 

Several studies are using the behind-the-meter approach in the economic analysis of 

BESS. In (Sharma, Han, and Sharma 2019) the authors implement a residential storage 

system optimization algorithm, concluding that BESS sizing depends on the tariff 

structures. In (Barcellona et al. 2018), the authors conclude that it is currently not 

economically feasible to install BESS in network-connected customers. The economic 

feasibility of peak shaving using BESS in residential customers for short peak injection 

is given in (Koskela et al. 2019; Biroon, Biron, and Hadidi 2020). Nevertheless, in these 

papers, network tariff is an independent or exogenous variable. 

The time-varying pricing can be another driver for the acceptance of behind-the-meter 

BESS and influence the dispatch of these assets. These tariffs are considered in many 

storage scheduling and sizing methods as well as in prosumer and microgrid DER models 

(Heleno et al. 2020b). Thus, we define for residential consumers in the system presented 



27 

 

in Figure 8 a time-varying pricing (see also Figure 9). The goal is to quantify the economic 

impact of applying small residential energy storage units in the network. 

The Economic Benefit (EB) for peak shaving is composed of the load in the off-peak 

(OP) and the discharge in the peak (P) for the application of the two-part tariff. 

Considering the efficiency of the loading regime εin and unloading εout, we have that EB 

will be given by the ratio between DNT in the tariff stations and Energy Rates (ER), 

according to Eq. (12). 

𝐸𝐵 = 𝐷𝑁𝑇𝑃 −
𝐷𝑁𝑇𝑂𝑃

 𝜀𝑖𝑛∙𝜀𝑜𝑢𝑡
− 𝐸𝑅 ∙  (1 − 𝜀𝑖𝑛 ∙ 𝜀𝑜𝑢𝑡) (12) 

We considered 𝜀𝑖𝑛 = 𝜀𝑖𝑛 = 90%. By assuming a fixed recharge time of 8 consecutive 

hours in the lowest tariff period for the location and a discharge time ranging from 2 hours 

to 5 hours, the probability distributions in Figure 11 are obtained, according to Eq. (12). 

 

Figure 11. EB Probability distributions. 

The shorter the discharge time the higher the EB. Furthermore, there is a large variation 

of EB as a function of the connection point. Table 4 presents some notable points of 

Figure 11. 

Table 4. EB results. 

Type EB 2h   EB 3h   EB 4h   EB 5h  

EB by Average Tariff 132.19 114.88 104.41 90.92 

Average EB 213.46 160.57 128.38 106.02 

EB decile upper 333.51 223.54 166.44 128.47 
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The EB by average tariff results from the application of a TOU tariff. The average tariff 

curve's variance will be greater than the variance of the weighted average tariff curve, and 

thus the application of a single tariff for the entire DSO area tends to reduce the feasibility 

of the BESS adoption. However, with the application of locational tariffs by identifying 

the 10% of customers with the highest EB and a 2-hour discharge period, it is possible to 

obtain an EB of $ 333.51 per kWh injected into the distribution network. 

 

4.4. Electric Vehicle Recharging 

Dynamic pricing is in the class of price response programs that has garnered the greatest 

attention in current times. There are three approaches for the EVR economic evaluation 

costs in the distribution network. The first is the one that considers the SRMC. Paper 

(Ghosh and Aggarwal 2017) proposes a pricing mechanism for EVR depending on energy 

volume, recharge time, and type (renewable or conventional). The model demonstrates 

that it is possible to reduce the peak netload with an economic signal. Paper (Wang et al. 

2018) presents an SRMC model with dynamic energy pricing, with the profit 

maximization objective of the recharging station. The second approach uses LRMC 

(Chekired, Khoukhi, and Mouftah 2018). The third applies in EVR stations that use the 

DLPM model to obtain the SRMC (Zheng et al. 2019). However, this research does not 

cover the completeness of DSO networks. 

Likewise, electricity tariffs could be designed to achieve operation objectives that are a 

proxy for potentially more effective decisions made by a centralized operator. The long-

term planning processes could be improved by integrating bulk power and DSO planning 

(Carvallo et al. 2020). Therefore, a long-term approach is necessary. 

We evaluate the impact of EVR in a network system presented in Figure 8 using the 

Nissan Leaf vehicle domestic recharge of 3.25 kW, 0.188 kWh/km, recharge efficiency 

of 92%, and an average trip in Brazil of 13.3 km (NTU 2017). The EVRs are applied to 

Residential customers. We adopted a minimum recharge time of 0.8363 hours. We also 

considered a recharge in up to 8 hours as the upper limit of the time of complete domestic 

recharge using Wallbox (home charger). Finally, the recharge time utilizes a truncated 

normal distribution. 
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When considering Uncontrolled Charging, in which all customers perform charging in 

the average period of 18 hours, and truncated normal distribution condition, we obtain 

the average and top decile tariffs, presented in Figure 12 and Figure 13. 

  

Fig. 12. Average Tariff Uncontrolled 

Charging. 

Fig. 13. Decile upper Uncontrolled 

Charging. 

The axis Recharge Time represents a value between 0.8363-8 hours, and Coefficient of 

Variation a statistic of truncated normal distribution. 

In turn, when considering Smart Charging, in which all customers recharge in the period 

that individually minimizes their costs, we obtain Figure 14, which represents the average 

cost per MWh, as a function of recharging time and coefficient of variation of the 

truncated normal distribution. Furthermore, from Figure 15, it is possible to observe the 

cost curve for the lower decile. 

  

Fig. 14. Average Tariff Smart Charging. Fig. 15. Lower Decile Smart Charging. 

Our analyses reveal an average tariff of 154.98 $/MWh for Smart Charging for charging 

time of 8 hours, against one of up to 265.77 $/MWh for Uncontrolled Charging. However, 

evaluating the upper decile for Uncontrolled Charging of 320.27 $/MWh and the lower 
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decile for Smart Charging of 144.81 $/MWh it is possible to observe the dimension of the 

efficiency loss due to the lack of network time-varying pricing for EVR. 

 

5. CONCLUSIONS AND RECOMMENDATIONS 

Consumers are traditionally divided into limited customer groups, due to homogeneous 

elasticity characteristics and consumption habits. The consumer classes met the 

requirements of the tariff structure of the distribution electricity systems. However, the 

characteristic of investment capacity in Distributed Energy Resources must be considered 

in the evolution of the current tariff structure. There are no off-the-shelf models for the 

tariff structure, i.e., they must be evaluated on a case-by-case basis, according to the 

technical, economic, and social characteristics of the area. 

However, cost causation criteria, financial requirement, and tariff stability must be 

considered when setting the tariffs for the new kind of standard customers. Thus, more 

accurate tariff structure models should be used to evaluate the economic impacts due to 

the variability of the characteristics of consumers, besides changing their consumption 

behavior through automation and electric vehicle recharging, and investment in energy 

storage and production. 

The findings presented in this paper emphasize the importance of DER tariff structure to 

make explicit the marginal and average costs per customer. The model substantially 

increases the calculation precision of impact costs and tariff, which enables statistical 

analysis of regionalized data and by customer characteristics, i.e., leaving it up to 

regulatory entities to define tariff structure. 

The Pareto optimal tariff is applied for Rooftop-PV. Our results indicate that it varies due 

to the load profile, and it is advisable to employ at least one differentiated tariff by 

consumer class. The findings presented in this paper emphasize the importance of a tariff 

structure that includes periods of optimal distribution network cost for BESS in peak 

shaving. However, for the correct signaling, it is necessary to reduce the temporal and 

locational granularity. The findings presented in this paper emphasize the importance of 

locational and dynamic price, indicating the best benefits of installing BESS for peak 

shaving and sharing efficiency gains. 
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The findings presented from BESS can be applied to EVR. Furthermore, there is a high 

price response because there will be no disconformity in changing the load profile. Thus, 

there will be a substantial increase in the consumption price elasticity, reducing the 

market response. 

The tariff structure chosen is essential for a fair and efficient distribution system with vast 

DER adoption. The proposed model can offer more cost causality criteria designs by 

reducing temporal and locational granularity, which would allow studying the impact of 

the DER in tariff structure. 
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